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Abstract: The increasing focus on unquenched lattice simulations has revived interest also

in gluonic screening masses, whose inverses characterise the longest length scales at which

thermal fluctuations are correlated in a hot non-Abelian plasma. We fill an apparent gap

in the literature concerning the theoretical structure of one of the relevant screening masses

(the one which equals twice the Debye mass at leading order), by showing that the next-to-

leading order correction to it is perturbative and small. This surprising result appears to

explain semi-quantitatively why this particular channel yields the smallest gluonic screening

mass at temperatures around a few hundred MeV (it couples to the energy density and

to the real part of the Polyakov loop), even though it is not among the smallest screening

masses at asymptotically high temperatures.
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1 Introduction

Screening masses, or inverses of equal-time correlation lengths, are a fundamental charac-

teristic of the long-range properties of a thermal system. Indeed, the quantum numbers

and the degeneracy of the excitation with the lowest screening mass indicate what kind of

an effective theory it is that determines the infrared sensitive thermodynamic properties of

the system, such as finite volume effects [1]. In QED, for instance, correlators of magnetic

fields display a vanishing screening mass, while correlators of electric fields reveal a non-

vanishing “Debye mass”; this then shows that at the longest length scales only magnetic

fields are significant in an Abelian plasma, and finite-volume effects are powerlike.

In non-Abelian gauge theories such as QCD, it turns out that the situation with the

screening masses is a bit more complicated than in QED. In fact, even the definition of what

is meant by screening masses requires some care: electric and magnetic fields, on which

our Abelian intuition is based, are no longer gauge-invariant objects. Because of these

subtleties it was only in the mid-1990’s that fully satisfactory gauge-invariant and non-

perturbative definitions were given to colour-electric, colour-magnetic, and certain more

refined classes of screening masses in a non-Abelian plasma [2].

Following the conceptual clarification of the gauge-invariant definition of gluonic

screening masses in QCD, systematic lattice measurements could also be carried out in

all relevant channels. We would like to mention, in particular, quenched lattice measure-

ments in four dimensions [3, 4]; unquenched lattice measurements via a dimensionally

reduced effective field theory in three dimensions [5]; and, most recently, unquenched lat-

tice measurements directly in four dimensions [6]. Of course, a systematic analysis of the

same observables can also be carried out in the AdS/CFT framework [7].

The purpose of the present paper is to consider the screening masses within the weak-

coupling expansion. A number of them fall into the general class of observables whose
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leading-order value is fixed by the Debye scale; this class includes also many real-time

observables of current interest, such as heavy-quark diffusion and jet quenching. It has

been found in several such cases that the next-to-leading order correction is large for

phenomenologically interesting values of the gauge coupling [8]. Our results will produce

a “counter-example” to this empirical observation, showing that it is also possible to find

observables in which the next-to-leading order correction is small.

2 General framework

In order to implement the resummations that are needed for defining the weak-coupling

expansion at high temperatures, we choose to view the screening masses with the help

of the dimensionally reduced effective field theory for hot QCD [9], called EQCD [10].

This approach is certainly sufficient for clarifying the theoretical structure of the various

screening masses and, at least on the semi-quantitative level, also for numerical estimates.

The effective Lagrangian has the form

LE =
1

2
Tr [F 2

ij ] + Tr [Di, A0]
2 +m2

E
Tr [A2

0] + . . . . (2.1)

Here Fij = (i/gE)[Di,Dj ], Di = ∂i − igEAi, Ai = Aa
i T

a, A0 = Aa
0T

a, and T a are her-

mitean generators of SU(3). In three dimensions the dimensionality of g2
E

is GeV. A 2-loop

derivation of m2
E
, g2

E
in terms of the parameters of four-dimensional QCD can be found in

ref. [11].

Correlation lengths are defined from the exponential fall-off of two-point functions of

local gauge-invariant operators. Without a loss of generality we assume the two-point

functions to be measured in the x3-direction. The independent channels can be classified

according to discrete symmetries defined in the two-dimensional transverse (x1, x2)−plane.

A particularly important symmetry is often called R, and corresponds to the CT-symmetry

of the original QCD; in terms of eq. (2.1), it sets A0 → −A0. “Colour-electric operators”

are defined to be odd under this symmetry, while “colour-magnetic operators” are even [2].

With this notion, examples of operators from which colour-electric screening masses

can be determined are Tr [A0F12] and Tr [A3
0]. In four-dimensional QCD, these correspond

to Im Tr [PF12] and Im Tr [P ], respectively, where P is the yet untraced Polyakov loop

(we assume that the center symmetry is broken in the “trivial” direction, as is certainly

the case in the unquenched theory). Note that these two channels do not couple to each

other because of a different parity in the transverse plane. Typical operators from which

colour-magnetic screening masses can be determined are Tr [A2
0] and Tr [F 2

12], but any other

gauge-invariant local singlet operator such as the energy density works as well. In four-

dimensional QCD, Tr [A2
0] corresponds to ReTr [P ].

It is important to note that in principle the operators Tr [A2
0] and Tr [F 2

12] couple to

each other [12, 13]. In other words, if we measure a correlation matrix between these

operators, then the matrix includes non-diagonal components. It is possible, however, to

diagonalize the correlation matrix at large distances, i.e. to find two orthogonal eigenstates

which display different screening masses (see, e.g., refs. [14]). It is these eigenvalues of
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the two-dimensional Hamiltonian that we refer to as M2 and M3 in the following. In

practice, the coupling between Tr [A2
0] and Tr [F 2

12] is very weak, both parametrically [13]

and numerically [5], so it appears to us that it should play no actual role in our analysis.

Assuming that mE ≫ g2
E
/π, as is indeed the case at very high temperatures (in which

limit mE ≈ gT (Nc/3+Nf/6), g
2
E
≈ g2T , where g2/4π = αs is the strong gauge coupling, Nc

is the number of colours, and Nf is the number of massless quark flavours), we can view A0

as a heavy field and write down the parametric forms of various screening masses within

the heavy-mass expansion.1 In particular, the smallest screening mass in the colour-electric

channel, coupling to Tr [A0F12], has a well-known logarithmic term at the next-to-leading

order [15], and the general form [2]

M1 ≈ mE +
g2

E
Nc

4π

(

ln
mE

g2
E

+ c1

)

, (2.2)

where c1 ≈ 6.9 for Nc = 3 [16]. This expression works reasonably well down to low

temperatures, overestimating the “exact” value within EQCD by a modest amount [5]. In

the colour-magnetic channel, we can expect the mass coupling to Tr [A2
0] to have, in the

heavy-mass limit, the form

M2 ≈ 2mE +
g2

E
Nc

4π

(

ln
mE

g2
E

+ c2

)

. (2.3)

Roughly, the correction here represents a three-dimensional bosonic analogue of the binding

energy of a heavy quark-antiquark system, like J/ψ. As far as we can see it is a non-trivial

fact, following from the analysis in section 4, that the coefficient of the logarithm in eq. (2.3)

agrees with that in eq. (2.2). The colour-magnetic screening mass which is the smallest

at asymptotically high temperatures can, in contrast, be obtained from the theory from

which A0 has been integrated out [13]; it couples dominantly to Tr [F 2
12] and has the form

M3 ≈
g2

E
Nc

4π
× c3 , (2.4)

where c3 ≈ 10.0 for Nc = 3 [17].

3 Non-relativistic limit

Our goal now is to estimate the coefficient c2 in eq. (2.3) which, to the best of our knowledge,

remains unknown. The situation is quite similar to that in the case of the screening masses

of fermionic bilinears, which we have studied previously in refs. [18, 19]. The two adjoint

scalar fields form a bound state, and a formal scale hierarchy exists between the heavy scalar

mass, mE; the relative momentum between the bound state constituents, p ∼ (g2
E
mE/π)

1

2 ;

and the binding energy, ∆E ∼ g2
E
/π, such that p2/mE ∼ ∆E (logarithms and numerical

factors have been omitted; note that in terms of the four-dimensional coupling the scales are

1We stress that at this point the scale hierarchy mE ≫ g2

E/π serves only as a theoretical organizing

principle for the computation; in practical estimates various group theory and numerical factors need to be

added, and the phenomenological viability of the description can only be estimated a posteriori.
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separated only by ∼ (g/π)1/2). This scale hierarchy can be employed for constructing a set

of effective field theories, perhaps ultimately a scalar analogue of PNRQCD [20]. As argued

in ref. [18], however, at the level of the correction of O(g2
E
/π), the whole procedure simply

amounts to solving the Schrödinger equation in a two-dimensional Coulombic potential for

the s-wave state; the only complication is that the heavy constituent “rest mass” entering

the bound state problem needs to be fixed by a proper matching computation.

To nevertheless give a somewhat more concrete indication of the effective theory setup,

let us carry out a Wick rotation from the 3-dimensional Euclidean theory to a (2+1)-

dimensional Minkowskian theory, and rename the x3-coordinate to be time, t. Let us,

furthermore, write the time dependence of the quadratic part of the action in Fourier

space, with ω denoting the frequency:

SE =

∫

ω

∫

x

Tr
{

A0(−ω,x)
[

−ω2 +m2
E
−∇2

]

A0(ω,x)
}

+ . . . . (3.1)

If we concentrate on modes close to the on-shell points, |ω ± mE| ∼ g2
E
/π ≪ mE, and

write ω = mE + ω′ or ω = −mE − ω′, then we observe that the dynamics of the

forward-propagating mode A′
0(ω

′,x) ≡ A0(mE+ω′,x) and the backward-propagating mode

A′†
0 (ω′,x) = A0(−mE − ω′,x) is determined by the non-relativistic Lagrangian

LE ≈ 2mETr

{

A′†
0

(

−i∂t −
∇2

2mE

)

A′
0 +A′

0

(

i∂t −
∇2

2mE

)

A′†
0

}

. (3.2)

In configuration space, the original field A0 is related to the new effective fields by A0 =

e−imEtA′
0+eimEtA′†

0 . At leading order, then, the forward-propagating part of the composite

operator Tr [A2
0(t)] has the energy eigenvalue 2mE.

When this argumentation is promoted to the quantum level, we expect the derivatives

appearing in eq. (3.2) to get replaced by covariant derivatives, ∂tA
′
0 → [Dt, A

′
0]; the rapid

oscillation frequency mE to get replaced by a matching coefficient, which we denote by

Mrest; and the parameter mE in the denominator of the kinetic term in eq. (3.2) to become

another matching coefficient, which we denote by Mkin. In the limit Mkin → ∞ the

propagators of the A′
0’s are replaced by Wilson lines in the adjoint representation: G(t, r) ≡

〈

A′a
0 (t, r)A′a

0 (t,0)A′b
0 (0, r)A′b

0 (0,0)
〉

= Tr {Uadj(t, r)U
T
adj(t,0)}, where Uadj(t, r) is a straight

timelike adjoint Wilson line at spatial position r and we have for brevity omitted the (non-

unique) spacelike connectors that make the point-split operators gauge-invariant. The

evaluation of this expectation value leads to the concept of a static potential in the usual

way: V (r) = limt→∞[i∂tG(t, r)]G−1(t, r). For the actual bound state problem Mkin ≈ mE

stays finite and the static potential takes the role of a matching coefficient. We do not need

to know more about the effective theory setup in the following but remark that a formal

discussion can be found in ref. [22].

4 Determination of M2

Proceeding now with the non-relativistic setup outlined above, we expect that in the heavy

mass limit the bound state mass can be written as

M2 ≈ 2Mrest + ∆E . (4.1)
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In dimensional regularization in d = 3 − 2ǫ spatial dimensions, the next-to-leading order

value of the matching coefficient Mrest reads [2]

Mrest = mE −
g2

E
Nc

8π

(

1

ǫ
+ ln

µ̄2

4m2
E

+ 1

)

, (4.2)

where µ̄ is the scale parameter of the MS scheme. The binding energy can be solved

from a two-dimensional Schrödinger equation; the potential appearing in it, obtained by

integrating out the time (or x3) components of the gauge fields reads

V (r) = g2
E
Nc

∫

d2−2ǫq

(2π)2−2ǫ

1 − eiq·r

q2
=
g2

E
Nc

4π

(

1

ǫ
+ ln

µ̄2r2

4
+ 2γE

)

. (4.3)

In total, then, we are looking for the ground state solution to the problem

[

2Mrest −
∇2

r

mE

+ V (r)

]

Ψ0 = M2Ψ0 , (4.4)

where the non-kinetic terms combine to the finite expression

2Mrest + V (r) = 2mE +
g2

E
Nc

2π

[

ln(mEr) + γE −
1

2

]

. (4.5)

In the kinetic term of eq. (4.4), we already expanded the (“reduced” version of the) match-

ing coefficient Mkin to leading order in g2
E
/πmE, as is sufficient at the current level of

accuracy.

It is important to note that, unlike speculated in earlier works [21], no infrared di-

vergences appear in eq. (4.5). The reason is that the logarithmic divergences originating

from the “hard” momenta (q ∼ mE; eq. (4.2); viewed from this side 1/ǫ is an infrared

divergence) and the “soft” momenta (q ∼ 1/r; eq. (4.3); viewed from this side 1/ǫ is an

ultraviolet divergence) of the spatial gluons Ai cancel against each other in eq. (4.5).

Carrying out suitable rescalings, eq. (4.4) can be solved up to one transcendental

number. We thus obtain

M2 ≈ 2mE +
g2

E
Nc

2π

(

0.60372466 −
1

2
ln ρ

)

, (4.6)

where

ρ ≡
g2

E
Nc

2πmE

=
Nc

2πy1/2
. (4.7)

At next-to-leading order in massless QCD the ratio y ≡ m2
E
/g4

E
is renormalization group

invariant [23], and can be written compactly as

y ≈
(2Nc +Nf)(11Nc − 2Nf)

144π2

[

ln
4πT

ΛMS

− γE +
4Nf ln 2 −Nc

11Nc − 2Nf

+
5N2

c +N2
f + 9Nf/2Nc

(2Nc +Nf)(11Nc − 2Nf)

]

.

(4.8)

The corresponding mE/g
2
E

= y1/2 is plotted in figure 1 for Nc = 3.
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Figure 1. The parameter mE/g
2

E
= y1/2 from eq. (4.8) for Nc = 3.

5 Summary and conclusions

Comparing eq. (4.6) with eq. (2.3), we obtain

c2 ≈ 1.9467141 (5.1)

for Nc = 3. Given that mE ≥ 0.5g2
E

(cf. figure 1), the latter term in eq. (2.3) is always

subdominant. This is in stark contrast to eq. (2.2), in which the latter term, containing

the non-perturbative coefficient c1 ≈ 6.9, dominates in the whole temperature range of

phenomenological interest. Note that because c2 ≪ c3 ≈ 10.0, M2 is in general also below

M3 (cf. eq. (2.4)) in the temperature range of figure 1. All three masses are plotted in

figure 2, both in units of g2
E

and in units of T .

To summarize, it appears understandable that M2 represents the smallest screening

mass at realistic temperatures, because of the small perturbative coefficient c2 ≈ 1.9 in

its next-to-leading order term, even though in the extreme limit mE ≫ g2
E
/π it eventually

overtakes both M1 and M3, because a higher multiple of mE’s appears in the leading term.

This observation, together with the explicit results in figure 2, constitute the main points

of this note.

We would like to stress, finally, that although our result forM2 is not meant to be quan-

titatively accurate at low temperatures, it nevertheless reveals an interesting pattern. For

example, for Nf = 0, figure 2 suggests M2/T ≈ 3 . . . 4 in the phenomenologically interesting

temperature range, while lattice measurements indicate values M2/T ≈ 2.5 . . . 3 [3, 4], i.e.

in the same ballpark but deviating downwards on the quantitative level. It appears, though,

that this difference could at least partly be understood through higher order corrections

within the EQCD effective theory defined by eq. (2.1): for T/ΛMS ≈ 2, the non-perturbative

– 6 –
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Figure 2. Left: The masses M1,M2,M3 (cf. eqs. (2.2)–(2.4)), in units of g2

E
, for Nc = 3, after

insertion of mE/g
2

E
from eq. (4.8). For better visibility, the four curves forM3, which are degenerate,

have been slightly displaced from each other. Right: The masses M2,M3, which belong to the same

quantum number channel, after the insertion of the 2-loop value for g2

E
/T from ref. [11].

lattice measurements in ref. [5] yielded M2/g
2
E
≈ 1.0, 1.3, 1.5, 1.6 for Nf = 0, 2, 3, 4, re-

spectively, and M1/g
2
E
≈ 1.7, 2.0, 2.1, 2.1 for the same cases; these values lie consistently

somewhat below the perturbative estimates in the left panel of figure 2, resulting in a bet-

ter accord with 4d lattice data. Moreover, a similar overshooting of the O(g2
E
)-corrected

screening masses has been found for mesonic observables [18, 19]. So, it might be the

general case that higher-order corrections, mostly from within three-dimensional EQCD

dynamics, sum up to a negative correction to the next-to-leading order expression for

screening masses. This would imply that screening masses are different in character from

some dynamical quantities like the heavy quark momentum diffusion coefficient, in which

case higher order corrections appear to add up on top of the already large next-to-leading

order correction [24].

6 An open issue

We end by briefly pointing out an open problem to which we have no solution. Consider

the screening mass extracted in four dimensions from the imaginary part of the Polyakov

loop; in EQCD this corresponds to M(Tr [A3
0]). In weak coupling, M(Tr [A3

0]) = 3mE +
g2

E
Nc

4π (c4 ln mE

g2

E

+ c5). Even though this is heavier than M1, particularly for Nf > 0 [5], it

can be easily measured on the lattice [6], since the corresponding operators have different

quantum numbers. Therefore, it would be nice to know the coefficients c4, c5. Though

this is certainly a well-defined problem (for Nc > 2), we have no clear idea about how it

could be solved in a systematic way. (Probably the system can still be described by a non-

relativistic many-body Schrödinger equation with a certain three-body potential in it, but

in the absence of an effective theory framework or an explicit power-counting argument,

– 7 –
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it is difficult to know for sure how to proceed without ambiguities.) If the pattern found

in this note continues, however, we might expect c4, c5 to be coefficients at most of order

unity, such that the leading-order term would dominate even more than in M2.
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